国产GPU突破!摩尔线程发布Torch

内容摘要快科技5月9日消息,近日,国产GPU厂商摩尔线程正式发布Torch-MUSA v2.0.0版本,这是其面向PyTorch深度学习框架的MUSA扩展库的重要升级。在Torch-MUSA中,用户只需指定torch.device( musa ),

快科技5月9日消息,近日,国产GPU厂商摩尔线程正式发布Torch-MUSA v2.0.0版本,这是其面向PyTorch深度学习框架的MUSA扩展库的重要升级。

在Torch-MUSA中,用户只需指定torch.device( musa ),即可将现有的PyTorch模型迁移到MUSA架构的GPU上运行,无需大幅修改代码,目前Torch-MUSA已完全开源,可通过GitHub获取源代码。

作为本次升级的核心亮点,Torch-MUSA v2.0.0率先在国产GPU上实现了对FP8数据类型的完整支持。

FP8是当前AI计算的一种低精度格式,在支持原生FP8的GPU上,大语言模型训练采用FP8混合精度可大幅提高GPU算力,降低显存占用。

摩尔线程基于新一代MUSA Compute Capability 3.1计算架构的全功能GPU原生支持FP8计算,为Torch-MUSA v2.0.0实现FP8矩阵乘法和分布式通信优化提供了基础。

依托这一底层架构优势,Torch-MUSA v2.0.0能够充分发挥FP8的计算效能,显著提升大语言模型训练和推理的效率。

Torch-MUSA v2.0.0在MUSA计算平台引入多项创新功能,进一步提升深度学习任务的执行效率,主要包括:

1、新增虚拟内存管理支持:

MUSA虚拟内存管理技术能够有效缓解GPU内存碎片化问题,降低模型训练过程中的峰值内存占用,特别适用于FSDP、DeepSpeed和Megatron-LM等主流大模型训练框架。

2、新增MUSA Graph支持:

MUSA Graph技术将多个MUSA内核整合到一个图中,通过单次CPU调度大幅减少启动开销,提升计算效率,同时与CUDA Graph接口高效兼容。

3、torch.compile增加Triton后端支持:

为torch.compile提供了Triton-MUSA后端支持,开发者可以直接使用PyTorch原生接口,获得更高效的性能表现。

不仅如此,Torch-MUSA v2.0.0在完整支持PyTorch 2.2.0的基础上,还新增了对PyTorch 2.5.0的支持,使开发者能够在基于MUSA Compute Capability 3.1计算架构的全功能GPU上,无缝运行新版本的PyTorch。

未来Torch-MUSA还将继续跟进PyTorch的版本更新,计划支持更高版本的PyTorch。

【本文结束】如需转载请务必注明出处:快科技

责任编辑:黑白

 
举报 收藏 打赏 评论 0
24小时热闻
今日推荐
浙ICP备2021030705号-4

免责声明

本网站(以下简称“本站”)提供的内容来源于互联网收集或转载,仅供用户参考,不代表本站立场。本站不对内容的准确性、真实性或合法性承担责任。我们致力于保护知识产权,尊重所有合法权益,但由于互联网内容的开放性,本站无法核实所有资料,请用户自行判断其可靠性。

如您认为本站内容侵犯您的合法权益,请通过电子邮件与我们联系:675867094@qq.com。请提供相关证明材料,以便核实处理。收到投诉后,我们将尽快审查并在必要时采取适当措施(包括但不限于删除侵权内容)。本站内容均为互联网整理汇编,观点仅供参考,本站不承担任何责任。请谨慎决策,如发现涉嫌侵权或违法内容,请及时联系我们,核实后本站将立即处理。感谢您的理解与配合。

合作联系方式

如有合作或其他相关事宜,欢迎通过以下方式与我们联系: